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Abstract

We study uncertainty quantification in remote sensing of aerosols in the atmosphere
with top of the atmosphere reflectance measurements from the nadir-viewing Ozone
Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection
of pre-calculated aerosol models and on the statistical modelling of the model inad-
equacies. The aim is to apply statistical methodologies that improve the uncertainty
estimates of the aerosol optical thickness (AOT) retrieval by propagating model se-
lection and model error related uncertainties more realistically. We utilise Bayesian
model selection and model averaging methods for the model selection problem and
use Gaussian processes to model the smooth systematic discrepancies from the mod-
elled to observed reflectance. The systematic model error is learned from an ensemble
of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algo-
rithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the
additional Bayesian model selection and model discrepancy techniques. The method
is demonstrated with four examples with different aerosol properties: weakly absorbing
aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented
statistical methodology is general; it is not restricted to this particular satellite retrieval
application.

1 Introduction

Many ongoing studies are aiming for a better understanding of atmospheric aerosol
properties such as size distribution, type, optical properties, formation, and transport.
The remote sensing of atmospheric aerosols from space enables the monitoring of
aerosols on both regional and global scale. The satellite measurements are widely
used together with ground-based and airborne measurements to provide data for im-
portant atmospheric aerosol studies related to, for example, climate change, energy
budget, air quality and cloud properties.
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Atmospheric aerosols have been monitored for years from several satellite in-
struments including the Ozone Monitoring Instrument (OMI), the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), the Global Ozone Monitoring Experiment-2
(GOME-2), the Multi-angle Imaging SpectroRadiometer (MISR), the Cloud-Aerosol Li-
dar and Infrared Path finder (CALIPSO), the Scanning Imaging Absorption spectroM-
eter for Atmospheric Chartography (SCIAMACHY) and the Polarization and Direction-
ality of the Earth’s Reflectances (POLDER). The instrument characteristics vary with
spatial resolution, wavelengths, polarization and view angle. The aerosol retrieval al-
gorithms have been developed and gradually improved as the knowledge on satellite
sensors has increased. The development on retrieval algorithms have even made it
possible to retrieve aerosol properties from instruments that were not originally de-
signed for this.

The determination of the aerosol properties from satellite measurements is an ill-
posed inverse problem as the limited information content in the observations does
not allow for complete determination of aerosol properties. Prior information, such as
assumed surface conditions, and selection of aerosol properties for pre-calculated ra-
diative transfer models, is an essential part in the retrieval process. For the solution of
the inverse problem, various assumptions and simplifications are needed.

The forward problem in aerosol retrieval is based on radiative transfer calculations
which depend on various aerosol properties. Currently, these calculations are too time
consuming to be performed simultaneously with the retrieval inversion, and many op-
erational algorithms are based on pre-calculated look-up tables (LUT) for a selection of
aerosol types. In this paper the aerosol model selection problem refers to this choice
of the LUT or several LUTs which are most representative of the current aerosol type.
The atmospheric aerosol column content above the Earth ground-pixel can be a mix-
ture of several aerosol types, which complicates the choice of the correct aerosol type.
One important reason for the disagreement in the results derived from different satel-
lite instruments for the same location and time is the difference in the algorithms and
in the assumption of the underlying aerosol model (Kokhanovsky et al., 2010; Li et al.,
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2009; Livingston et al., 2009). This choice of an appropriate aerosol model composes
a significant part in the aerosol optical thickness retrieval.

The aim of this paper is to provide statistical tools that account the aerosol model
selection uncertainty in quantifying the uncertainty in the retrieved aerosol optical thick-
ness (AOT). The aerosol optical thickness (also called aerosol optical depth) is a di-
mensionless measure of the amount of light absorbed or scattered by the aerosols.
In addition, another source of uncertainty that is usually neglected in satellite retrieval
analyses is related to model error. The aerosol models contain results of radiative trans-
fer calculations for various aerosol physical properties. A simple LUT-based forward
model vastly simplifies the actual atmospheric conditions. We use tools from Bayesian
model selection methodology to weight the models according to their predictive abili-
ties (MacKay, 1992; Spiegelhalter et al., 2002; Robert, 2007) and combine information
about the AOT over the best fitting models by averaging over the best models (Hoeting
et al., 1999). The model discrepancy is modelled using Gaussian processes that define
the allowed deviations from modelled to observed reflectance by a suitable covariance
structure that lets model residuals to correlate depending on their wavelength distance
(Kennedy and O’Hagan, 2001; Rasmussen and Williams, 2006). The error model for
this discrepancy has been build up by empirically exploring a set of residuals of aerosol
model fits to the observed reflectances.

This methodology is applied to OMI measured reflectances at the top of the atmo-
sphere (TOA) using the aerosol models of the OMI multi-wavelength aerosol algorithm
OMAERQO. The operational OMAERO product uses a look-up table (LUT) based tech-
nique for the retrieval of aerosol optical properties in the ultraviolet and visible wave-
length region. The multidimensional LUT contains pre-calculated microphysical aerosol
models having specific optical properties such as aerosol optical thickness (AOT)
and single scattering albedo (SSA). The aerosol models represent four main types
of aerosols: desert dust, biomass burning, weakly absorbing and volcanic aerosols
(Torres et al., 2002, 2007; Livingston et al., 2009)
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The methodology is applicable to other instruments, also. This study is a part of
Finnish Technology and Innovation Agency (TEKES) funded project PP-TROPOMI,
where one aim was to improve the existing model selection algorithm of OMI to the ben-
efit of the future TROPOMI instrument algorithm development (Veefkind et al., 2012).
The next section introduces the OMAERQO algorithm. Section 3 describes the Bayesian
model selection technique to choose the aerosol model based on satellite observa-
tions with associated uncertainty. The characteristics for model error are determined in
Sect. 4. Finally, aerosol model selection in different atmospheric cases is exemplified
in Sect. 5.

2 Data and operational OMI multi-wavelength aerosol algorithm OMAERO

In this study we have used reflected solar radiation measurements from OMI on board
NASA’s Earth Observing System (EOS) Aura satellite, launched in July 2004. The Aura
spacecraft is in polar sun-synchronous orbit at altitude of 705 km having daily global
coverage with 14 orbits. The OMI instrument has been built in cooperation with Finland
and the Netherlands. OMI is a nadir-viewing solar backscatter spectrometer measuring
in the ultraviolet (UV) and visible (VIS) regions between 270 and 500 nm. The ground
pixel size is 13 x 24 km? at nadir. The retrievals from OMI measured Earth radiance and
solar irradiance spectrum at high spatial resolution are aerosol characteristics, surface
UV, cloud information and atmospheric trace gases including ozone, NO,, SO,, HCHO,
BrO and OCIO. The retrievals are used in the studies of air quality, ozone trend, and
relation between atmospheric chemical composition and climate change (Levelt et al.,
20064, b; Torres et al., 2007).

The operational OMI aerosol multi-wavelength algorithm OMAERO has been de-
veloped to retrieve aerosol optical properties for cloud-free scenes using reflectance
spectrum in the near UV and visible wavelength range between 331 and 500 nm. The
OMAERQO Level-2 data is available for public access from NASA GSFC Earth Sciences
(GES) Data and Information Services Center (DISC) (http://disc.gsfc.nasa.gov/Aura/
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OMIl/omaero_v003.shtml). The available data period is from 1 October 2004 to the
present. The OMAERO Level 2 product provides aerosol properties including aerosol
type, AOT, SSA, aerosol absorption indices and other related data (Torres et al., 2002,
2007). The principal component analysis applied to the OMAERO algorithm by Veihel-
mann et al. (2007) shows that OMI reflectance measurements have two to four degrees
of freedom of signal.

The current version (V003) of operational OMAERO product uses over land pixels
surface albedo climatology based on OMI observations of five years. Over oceans
the spectral bidirectional reflectance distribution function is calculated by means of an
ocean model that accounts for wind speed and chlorophyll concentration climatology.
The main factors having effect on the retrieved AOT uncertainty are the sub-pixel cloud
contamination, assumed surface albedo spectrum, instrumental factors and aerosol
model assumptions (Veihelmann et al., 2007; Brinksma et al., 2008; Curier et al., 2008;
Livingston et al., 2009). For thorough description of the OMAERO aerosol retrieval
algorithm the reader is referred to Torres et al. (2002, 2007) and to the OMAERO
Readme document file (available in website, e.g. http://disc.sci.gsfc.nasa.gov/Aura/
data-holdings/OMI/omaero_v003.shtml).

2.1 Aerosol optical thickness retrieval

For the OMAERQO algorithm, the radiative transfer calculations in the cloud-free scene
have been done in advance for a range of aerosol physical properties and sun-satellite
geometries generating the corresponding microphysical aerosol models (Torres et al.,
2002, 2007). These aerosol models are divided into four main types: desert dust,
biomass burning, weakly absorbing and volcanic aerosols. The main types are divided
into subtypes according to aerosol size distribution, refractive index and vertical profile,
ending up about fifty aerosol models in total. The content of the aerosol models are
stored in multidimensional look-up tables. The LUTs consist of various model param-
eters for a set of nodal points including AOT, SSA, solar zenith angle, viewing zenith
angle, relative azimuth angle, path reflectance, transmission and spherical albedo.
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The operational OMAERO algorithm uses TOA reflectance measurements Rs(4)
to find aerosol model and a value for AOT, 7, that best matches the observations. As
the spectral shape of the AOT is fixed by any given aerosol model input configurations,
there is only one parameter to be fitted, the AOT at reference wavelength (500 nm)
T = T(Arg)-

In the fitting procedure at present pixel a subset of aerosol models are preselected
according to a priori knowledge of aerosol regional and seasonal distribution. The fitting
is done using the least square criteria by minimizing

L 2
2 _ Robs (Ai) - Rmod (T’ /1i)
e = 2 (P

i=1

(1)

where L is the number of wavelength bands, o(4;) is the uncertainty in the measured
reflectance given as standard deviation and R,,4(7, 4;) is the reflectance from the
aerosol LUT model (Torres et al., 2002, 2007). The best fitted model is selected ac-
cording to test value ,yriod and is used to determine the spectral AOT. The operational
product provides also the precision of the AOT. In addition, a maximum of ten models,
for which root mean square of the residual reflectance is below a given threshold value,
are delivered with related AOT and SSA (Torres et al., 2007; Livingston et al., 2009).

2.2 Reflectance

The aerosol optical thickness 7 =1(4,¢) is retrieved from TOA reflectance spectrum.
The TOA spectral reflectance Rps(4) is calculated as the ratio of observed OMI Level
1b Earth radiance E (1) over the observed OMI Level 1b solar irradiance spectra F (1)
by

mE(A)

Rops(4) = 08 (0o) FO)’ (2)

where 6, is the solar zenith angle (Levelt et al., 2006b; Torres et al., 2007).
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The TOA reflectance R,,,,q(7, A) for aerosol model is calculated as
Rmod (/1! T, .us .uoa A¢a ps) = Ra (/15 T, ,U, .uO! A¢! ps)

A(D)
T T AW SWM T py)

T(’I!T!.uqu’pS)’ (3)

where path reflectance R,, transmittance T and spherical albedo s together with the
parameters 7 (AOT), A@ (relative azimuth angle), pg (surface pressure), u (cosine of
viewing zenith angle) and u, (cosine of solar zenith angle) are in practice taken from
LUT. The surface reflectivity A is taken from the land albedo climatology or the ocean
model (Torres et al., 2002; Veihelmann et al., 2007).

3 Bayesian model choice

There are various sources of uncertainties affecting the accuracy of the retrieved AOT
values, and the selection of correct LUT for modelled reflectance calculations is only
one factor. Other are related to the size of OMI pixels, sub-pixel cloud contamination,
aerosol horizontal inhomogeneity, etc. One large source of uncertainty comes from the
use of surface albedo climatologies. In this study, we want to use Bayesian model se-
lection tools to select the most appropriate LUT and quantify the related uncertainty.
Secondly, we need to take into account the other sources of uncertainties that might
cause systematic model discrepancies. This is done by using model discrepancy mod-
elling with Gaussian processes described in Sect. 4.

We want to choose an aerosol model from a set of models that provides a best ex-
planation to the observed reflectance at each OMI pixel. As several models might be
equally good, an important task here is to be able to quantify the uncertainty com-
ing from the model selection procedure. We will use tools from Bayesian statistical
inference. We utilise model choice, model averaging and modelling of model error that
naturally account different sources of uncertainties. Bayesian analysis will provide the
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solution to the estimation as a posterior probability density that is a measure of uncer-
tainty in the quantity of interest after accounting for the uncertainties in the modelling
procedure.

Model selection in general is a delicate problem that can not be solved by statistical
reasoning only. For a given data sets, there will be an infinite number of different models
that fit the data equally well. Here we deal with the specific problem of choosing the
most suitable model from a given set of candidate models. We acknowledge the fact
that none of the models might give adequate fit to the observations and want to have a
measure for that situation, also.

3.1 Bayesian parameter estimation and model comparison

Typical statistical parameter estimation procedure proceeds in steps, where first a given
model is fitted to the observations to get a parameter estimate and its uncertainty.
Then model residuals (i.e. the difference from modelled values to the observed ones)
are studied to see if the assumptions on the residuals are met. This is called model
diagnostics, where one typically checks for any systematic features in the residuals,
which signals for inadequacy in the model formulation, and the form of the distribution of
the residuals, signaling problems in the statistical assumptions. When we have several
possible models, as in the OMI case, one can fit all the models, one by one, and see,
which provides the best fit according to some chosen criteria, such as minimum least
squares.

We recall and outline the Bayesian parameter estimation and model selection in the
current framework of finding the posterior distribution of the AOT parameter 7 using the
OMAERQO algorithm. The posterior distribution for the uncertainty in 7 after observing
R.ps is given by the Bayes’ formula

p (Robsh’ m) ,O(T|m)
1% (Robs|m>

1% (Tlﬁobs’ m) = J (4)
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where the likelihood p(R,,s|7, M) and the prior distribution p(7|m) depend on the model
m. This will give us valid posterior inferences about 7 given the observed and modelled
reflectance, prior distribution on 7 and assuming that m is the correct model. As the
posterior p(7|R,ps, M) is a probability distribution and the denominator p(R,,s|m) does
not depend on 7, the latter must be a constant that normalizes the numerator

p (Repelm) = [ p (Ranelr, m) p(m)ar. (5)

For model selection this constant has an important use. It is the probability of observing
R.ps given the model. This value is sometimes called evidence. Basically, we could
select the model that has largest evidence with respect to the observations. There are
some caveats on using the evidence for model choice pointed out in statistical literature
(Robert, 2007). In this particular case, where one dimensional parameter is fitted with
a selection of possible models, we find basic Bayesian model selection very useful,
provided that we can account for the model error as done in Sect. 4.

The least square criteria in Eq. (1) has a direct counterpart within Bayesian inference
as it appears exactly in the likelihood function for Gaussian observation error

2 (Rops(A;) = Renoq (T, 4;)\ 2
P (Rops|T, m) ox exp (-% > ( obs ( I)G(,{.) a(7 )) >’ ©)
i=1 !

where we assume the measurement noise standard deviations o(1) to be known. If we
assume an uninformative prior for 7, i.e. p(7|m) =1 the least squares estimate, max-
imum likelihood estimate (MLE) and Bayesian maximum aposteriori (MAP) estimate
are all equal.

To compare models, we use a method based on the posterior model probabilities.
For a model m and measurements A, we use Bayes’ theorem again to obtain

p (Robs|m> p(m)
p(Robs) ,

p (ml’qobs) = (7)
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where p(m) is the prior probability that model m is the correct one. This formula de-
scribes the probability of model m assuming that the measurements have been gen-
erated from this model. The evidence term from Eq. (5) appears here as the marginal
likelihood p(R,ps|m) of observed data within model m. The denominator is again a nor-
malizing constant defined as sum over all the models considered

P(Rops) = 2 P (Rosslmi) £(m;). (8)

As we are going to deal with relatively small number of different models, this term is
easily calculated, provided we can calculate the individual evidences.

In case when a priori all models are equally likely, the model comparison and calcu-
lation of relative weights for each model simplifies to calculating the relative evidences:

_ p<Robs|m)
P (M|Rops) = 5 Fogam)) (9)

Consequently, in this case the model with the highest evidence is the best among the
models involved. We can compare models to see if one is clearly the best with respect
to other models, or if there are several almost as plausible. However, having the largest
evidence among a set of models does not guarantee a good, or even adequate, fit in
itself.

3.2 Bayesian model averaging

In practice, several aerosol models can provide equally good explanation to the mea-
surements and the particular one with highest evidence may have obtained it just by
chance. If there is uncertainty in the model selection, it should be accounted in the in-
ference about the quantity of interest. A Bayesian model averaging technique (Hoeting
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et al., 1999; Robert, 2007) enables the shared inference about an unknown appearing
in several alternative models.

The Bayesian model averaging uses combined posterior distribution defined by
weighting the individual posteriors by their evidence based weights

Pavg (Tl’qobs> = Z p (Tl’qobs’ mi) p (mil’qobs> . (10)

i=1

If different models give rise to different values for the unknown, then the uncertainty in
the averaged posterior distribution pg,4(7|Ro,s) can be larger than it is with any single
model. This means that the uncertainty in model selection has been incorporated into
the result (Hoeting et al., 1999; Robert, 2007).

4 Modeling the model uncertainty

In Fig. 1 reflectance spectra from one OMI pixel is shown together with two fitted
OMAERO models. The models represent two different aerosol main types, weakly
absorbing (model “1212”) and biomass burning (model “2223”). They both fit the ob-
served reflectance equally well and the modelled reflectance curves deviates from the
observed reflectance curve in a similar but opposite way. Both models can explain the
observations within the individual observation error-bar uncertainties, but there is sig-
nificant systematic bias. Next, we want to model this additional uncertainty caused by
model discrepancy.

To acknowledging the model discrepancy, or model error, we use an additional error
term n(1) and write the general model equation as

Robs(’l) = Rmod(Tv ’1) + ’Z(/l) + eobs(’l)- (1 1)
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As before, we assume that the spectral measurement uncertainty due to instrument
noise is known and Gaussian

Eans(d) ~ N (o, 02(/1)) . (12)

We wish to build a statistical model for the remaining model discrepancy term n(A). In
order to see how this discrepancy behaves we studied residuals of model fits, i.e. the
differences between the observed reflectances and the modelled reflectances,

Rres(’l) = Robs(’l) - Rmod(T’ A) (13)

at wavelengths A for an ensemble of residuals representing varying atmospheric situa-
tions (see Fig. 2). The modelled reflectances were calculated from aerosol models that
were the most appropriate according to the operational OMAERO product. We found
that the residuals have typically very similar systematic behaviour that could be mod-
elled by a suitable correlation structure. By using standard tools from spatial statistics,
we estimate this correlation structure and use it to build a model for the model error.

4.1 Gaussian process

Following Kennedy and O’Hagan (2001), we use a Gaussian process to model the
model discrepancy (1) between the aerosol model generated reflectance and the ob-
servations. Gaussian process is a stochastic process for which every finite set of its
realizations has a joint Gaussian distribution (Rasmussen and Williams, 2006). It is a
theoretical tool that provides a general and flexible framework for constructing the error
model. As we only deal with finite representations, we can work with random variables
and covariance matrices, in practice.

A Gaussian process is defined by its mean and covariance function, and the essen-
tial part in implementation is the determination and parameter estimation related to the
covariance function. We will model the model discrepancy as a zero mean Gaussian
process (1) ~GP(0,C), where the covariance function C quantifies the correlation
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properties of the discrepancy. As there typically is no direct data available about the
covariance, one proceeds by assuming a certain parameterized functional form. Fol-
lowing Banerjee et al. (2004) we derived the covariance function C using a Gaussian
variogram model. The covariance depends only on the wavelength distance |4; — 4|
and is defined as

2 2 4,2
C (A, 1)) = {“1 oxp (= (1 = 1))° /%) 4 £ 4, (14)

2 2 ’
O-0+O-1; /1,'—/1/'

where / is the correlation length parameterizing the distance between two wavelengths
where the residuals are still correlated. Parameter ag represents non-spatial diagonal

variance and 012 corresponds to spatial variance. These three parameters 0(2,, 012 and /
are the essential characteristics of the covariance function to be determined. In the next
section we show how we estimated the covariance function empirically from wavelength
dependent correlation structure of residuals of model fits.

After the model discrepancy term has been estimated, the theoretical covariance
function is used to form the corresponding covariance matrix C defined for the range of
wavelength bands of the observations. Then it can be incorporated into the likelihood
function (Eq. 6) as an additional error covariance

P (Rops|T, M) ox exp (—%Rrres (C + diag <02(1)>>_1 Rres> (15)

where R, is the residual of model fit (Eq. 13). The joint covariance matrix in Eq. (15)
consists now of two elements: C is the covariance matrix for model discrepancy
(Eg. 14) and diag(oz(,l)) is the diagonal matrix having measurement error variances
02(,1) as its diagonal elements.

By choosing a suitable representation for model error covariance matrix C we allow
a smooth departure from the model to the observed reflectance. The covariance func-
tion parameters define this allowed smoothness. As a consequence we achieve more
realistic, although wider, uncertainty estimation of AOT.
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4.2 Empirical semivariogram

The wavelength dependent correlation structure of the residuals can been estimated by
the means of empirical semivariogram. The relationship between theoretical variogram
models and the covariance functions of Gaussian process gives a way to determine
the covariance function of model discrepancy (Banerjee et al., 2004). The empirical
semivariogram for particular distance d between wavelengths 1; and 4, is given as

n(d)

1 2
M dzlllz_H (Rres (/1/‘) - Rres (Aj)) ) (16)

N =

y(d) =

where n(d) is the number of pairs of wavelengths with the same distance d. In the
formula for the particular distance d the sum of squared residual differences is taken
over the set of wavelength pairs with that distance d. The variance of the difference
between residuals at any two wavelengths depends only on the wavelength distance.

We have calculated the empirical semivariogram (Eq. 16) for the ensemble of residu-
als from different orbits. The empirical semivariogram at different wavelength distances
d is plotted as circles in Fig. 3. This figure shows the wavelength dependent correlation
structure of the residual differences. The residuals are similar at wavelengths nearby
while the variance of residual differences increases for those wavelength pairs that are
more apart.

Next we estimate the parameters of a theoretical parametric semivariogram model
that fits the empirical semivariogram. In the literature there are several predefined para-
metric forms for semivariogram (Banerjee et al., 2004). The commonly used Gaussian
variogram model used here is given as

y(d) = {Gg +of [1-exp (~(%))] itd >0 (17)

0, otherwise,

8523

AMTD
6, 8509-8541, 2013

OMI aerosol model
uncertainty

A. Maatta et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

©MO)

uI
| I


http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/8509/2013/amtd-6-8509-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/8509/2013/amtd-6-8509-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

where d =|4; — ;| is the particular distance between wavelengths. In spatial statistics

parameter 0(2, is called a nugget, ag + 012 is called a sill and 012 is a partial sill (Banerjee
et al., 2004). The correlation length / defines a scale for the distance between wave-
lengths where the residuals are still correlated. Parameters /, 65, and o7 are tuning
parameters of the variogram model that exactly corresponds to those of the covariance
function in Eq. (14). The fitted Gaussian semivariogram model is plotted in Fig. 3 as a
solid curve.

To illustrate the covariance function parameters, Fig. 4 shows how the averaged
posterior probability (Eq. 10) changes when the correlation length / in the covariance
function (Eq. 14) is increased from 20 to 200. The averaged posterior probability of 7
is the weighted mean of the posteriors within the best models. Between any two wave-
length bands at the distance of appointed correlation length, the modelled reflectance is
allowed to smoothly diverge from the measured reflectance, instead of close fit at inter-
vening wavelength bands. That is, the higher value of correlation length, the smoother
the modelled spectral reflectance are allowed to deviate from the measurements. This
is related to the higher uncertainty from model discrepancy that increase the uncer-
tainty in the AOT retrieval in our case.

5 Results

The aerosol model selection, model averaging, and model discrepancy modelling is
demonstrated here by four examples representing different atmospheric aerosol situ-
ations where we expect different dominant main aerosol types. In the examples we
have experimented the method using two cases: without the model discrepancy term
being included (Eq. 6) and with the model discrepancy included (Eq. 15). Table 1 lists
the examples with appropriate information. The selected pixels are cloud-free and over
land.

The basis of our work is in the OMI multiwavelength algorithm OMAERO (Torres
et al., 2002) introduced in Sect. 2. We used spectral measurements from 14 wave-
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length bands: 342.5, 367.0, 376.5, 388.0, 399.5, 406.0, 416.0, 425.5, 436.5, 442.0,
451.5, 463.0, 477.0 and 483.5nm. There were some differences in our experimental
retrieval algorithm compared to the operational OMAERO. We have taken the surface
reflectivity at given location and date from the database based on TOMS and MODIS
data, whereas the current OMAERO product (V003) uses over land the surface albedo
climatology based on OMI measurements spanning five years. We have defined for
this study the measurement noise standard deviation ¢(1) by assuming signal-to-noise
ratio SNR =500, i.e. 6(1) = R,,s(4)/SNR. We used fifty OMAERO aerosol model look-
up-tables (LUT) and the modelled TOA reflectance R,,,q was calculated as in Eq. (3).
The size of the covariance matrix C in Eq. (15) depends on the number of wavelength
bands involved. In our case the dimension of C is 14 x 14, that is quite moderate for the
matrix operations needed. The empirical semivariogram model described in Sect. 4.2
was used to estimate the parameters defining the covariance matrix C as / = 90, 0(2, =0

and o7 = 0.0004.

An important aspect in Bayesian analysis, the specification of prior distributions, has
not been discussed so far. As we are mainly performing a feasibility and method de-
velopment study, we have used rather conventional choices. For each individual model
fit the prior distribution for AOT parameter 7 was set to log-Gaussian with mean value
2 and 700 % standard deviation. This ensured the positivity of the estimated AOT val-
ues and was only weakly informative in all of the test cases. For the model choice,
uniform prior was used for p(m), i.e. all the models were a priori equally likely.

5.1 Greece forest fires 2007

During summer 2007 there were massive forest fires in many parts of Greece
(Kaskaoutis et al., 2011). We considered two days, approximately at the same loca-
tion in Peloponnese, 16 and 25 August 2007 (Table 1). The latter date represents the
time when the fires were at the most disastrous phase in that area.
Figure 5 shows observed and modelled reflectances on the left panel for 16 Au-
gust 2007. The observed reflectance is marked with blue dots and the measurement
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uncertainty as error-bars for 2o standard error. The posterior distributions of 7 on the
right panel describe the uncertainty of the retrieved AOT assuming that the associated
aerosol model is correct. The legend shows the relative posterior model probability
percentage values for each of the aerosol models involved. The upper panel repre-
sents the results of model comparison and AOT estimation when the model error has
not been involved. The five most likely models are of weakly absorbing (models with
“1” as the first digit) and biomass burning type (“2” as the first digit). The model “1213”
has the largest support as explaining the observed reflectance. The averaged posterior
distribution (Eq. 10), plotted in red thick line, has spread over the posteriors of 7 within
these five models. The sharp peaked and narrow posterior probabilities indicates low
uncertainty of retrieved aerosol optical thickness 7. We expected that this posterior un-
derestimates the true uncertainty. The lower panel shows the results when the model
discrepancy has been acknowledged in the fitting procedure. Now there are ten models
almost as likely in the averaged posterior distribution of 7. It appears that the uncer-
tainty averaged over models is very wide when the model discrepancy is involved. Also,
the single posterior distributions of T within models are clearly broader in this case.

On 25 August, all the best models are biomass burning type (see Fig. 6). Again, when
the model discrepancy is not included, the uncertainty shown in the figure on the upper
panel gives the impression of low uncertainty of retrieved AOT. In addition, there is
clearly only one best model according to the relative posterior model probability. When
the model discrepancy is included, Fig. 6 (bottom panels), there are seven models
almost as likely. This can also be seen by the mean posterior curve when the support
is spread over the most likely seven models. When comparing the results of these two
days, on the latter day the aerosol load is larger leading to different aerosol models
chosen and higher AOT estimates.

5.2 Russian wildfires 2010

There were several wildfires in the western part of Russia from the end of July until
August 2010 (Mei et al., 2011; Mielonen et al., 2011). The sample ground pixel from
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the day of 8 August 2010 is located near Moscow (Table 1). Figure 7 shows the re-
flectances and AOT estimates of the best fitted models when the model discrepancy is
not included (upper panel) and when the model discrepancy is included (lower panel).
In both cases the two best fitted aerosol models are the same biomass burning type
models. When the model discrepancy is not included, the model “2122” is clearly the
most likely and the second best model does not have much weight. Because of this,
the averaged posterior (in red) covers completely the posterior curve of 7 within model
“2122”. When fitting the model to the measured reflectance acknowledging the model
discrepancy term the ranking between the best two models is not so clear anymore.
The posterior distributions of 7 under the best models are broad and now they overlap
each other.

There is a ground-based AOT measurement site in Moscow, Moscow_MSU_MO
(55° N, 37° E), operated within the Aerosol Robotic Network (AERONET). The Level 2
AQOT_500 from AERONET is 2.877 (http://aeronet.gsfc.nasa.gov/). This ground-based
AOT value lies almost in the middle of the possible AOT range (Fig. 7).

5.3 Sahara sand storm 2011

In April 2011 there were strong Sahara dust storm (PreiBler et al., 2011). At that
time, favourable weather conditions helped the dust to transport long way across
the North Atlantic and Europe (http://earthobservatory.nasa.gov/NaturalHazards/view.
php?id=50123). We consider here the date of 5 April 2011 (Table 1). The best fitted
aerosol models are of type desert dust (Fig. 8). With or without model discrepancy,
the same two best models have the largest evidence. Also the best model “3212” has
almost the same relative evidence in both cases, as seen from the relative posterior
model probability percentage values in the legend boxes. However, when the model
discrepancy term is included (lower panel) the posterior curves indicate higher uncer-
tainty in the retrieved AOT 7 value. The reflectance curves (left panel) show visible
systematic errors in both of the models. The inclusion of model error shifts both poste-
rior curves to right and widens the uncertainty (right panel).
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6 Discussion and conclusions

Our aim was to study the additional retrieval uncertainty originating from the need to
select one look-up-table-based aerosol model from a set of pre-calculated models.
We utilized Bayesian statistical methodologies that are general in scope and applica-
ble to a wide range of similar problems. As a particular application example we used
operational OMI reflectance measurements from NASA’s Aura satellite and modified
operational OMAERO aerosol algorithm to estimate aerosol optical thickness (AOT)
parameter. In OMI, the amount of information in the measurements is known to be lim-
ited to accurately select the correct aerosol type. Also, in practice there may be several
models that explain the observations equally well.

The use of Bayesian statistical inference provides unified approach for quantification
of uncertainties originating from the model choice and from parameter estimation. Here
the Bayes’ formula is applied twice: first, when defining the posterior distribution of
unknown AOT within each aerosol model, and second, when comparing these models
to select the most appropriate aerosol model. In our particular case there is only one
unknown aerosol model parameter and the actual statistical calculations are rather
simple. The obtained posterior probability weights of the models are used to build an
averaged model that accounts for the uncertainty in the selection procedure.

The aerosol model represents some aerosol type with certain size distribution, re-
fractive index and aerosol layer height, and is an approximation of the reality which
seldom matches the simplifying assumptions used in model calculation. This causes
additional uncertainty into the retrieval. This model discrepancy is taken into consider-
ation by applying Gaussian process model to explain the characteristics for this model
error. The covariance function defining the model discrepancy model is estimated em-
pirically from an ensemble of residuals of model fits. Adding this model discrepancy
term together with measurement errors in the aerosol model fitting procedure will allow
wider deviation for the model from the observed spectral reflectance.
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The applied model for the error model is just one example of different possible ways
to explain the systematic departures. The selected Gaussian process approach allows
the modeled reflectances to have smooth deviations from the observed reflectances,
and in our studies it was able to account for the typical systematic features in the model
residual. In our case, once having estimated it, one global model error covariance ma-
trix was used for all the test cases we considered. If needed, it would be possible
to set up a table of model error covariance parameters depending, for instance, on
geographical distribution climatology of models, or even to estimate error model pa-
rameters individually for each orbit, etc. Instead of using observed deviances, one way
to study model error would be by doing radiative transfer simulations for some fixed
atmospheric states and then estimating the model deviations at these situations.

In our examples, all the available aerosol models were equally probable a priori.
Because of the limited information in the measured reflectance, the prior selection of
aerosol models for certain location and time would be necessary, in practice. Prior infor-
mation about the background aerosol conditions is important, especially, in situations,
where the amount of aerosols is small, as the different models would be indistinguish-
able based on the observed reflectance only. In practice these prior weights could be
based on aerosol distribution climatologies.

Our motivation was to improve the model choice process by acknowledging uncer-
tainties from model selection together with measurement uncertainty, and also the
aerosol model discrepancy, by taking advantage of statistical methodologies. We have
demonstrated that by relative simple additional calculation we can improve the existing
OMAERQO algorithm to include model selection uncertainty into the retrieval uncertainty
estimates. To further quantify the benefits of these additional calculation would need
more refined validation and comparisons of different aerosol retrieval products, both
satellite and ground-based. However, we feel that our study has already demonstrated
the importance and the added value of more careful model error modelling.
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Table 1. Orbits, dates and locations of example cases.

Orbit Date Latitude (deg) Longitude (deq)
016415 16 Aug 2007 37.088 22.906
016546 25 Aug 2007 37.067 22.794
032258 8 Aug 2010 55.335 36.878
035754 5 Apr 2011 30.120 13.790
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